Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Biol Pharm Bull ; 47(3): 680-691, 2024.
Article En | MEDLINE | ID: mdl-38522942

Cholelithiasis, commonly known as gallstones, represents a prevalent hepatobiliary disorder. This study aimed to elucidate the therapeutic role and mechanism of Danyankang capsulein treating cholelithiasis induced by a high-fat diet in C57BL/6 mice. The therapeutical potential of Danyankang was assessed through biochemical analyses, histopathological examinations, protein detection, and 16S rDNA sequencing. A high-fat diet resulted in cholelithiasis manifestation in mice, with discernable abnormal serum biochemical indices and disrupted biliary cholesterol homeostasis. Danyankang treatment notably ameliorated liver inflammation symptoms and rectified serum and liver biochemical abnormalities. Concurrently, it addressed biliary imbalances. Elevated expressions of toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB)/pNF-κB, HMGCR, CYP7A1, and CYP8B1 observed at the inception of cholelithiasis, were notably reduced upon Danyankang administration. Furthermore, 16S rDNA analysis revealed a decline in species number and diversity of the intestinal flora in cholelithiasis-treated mice, while the decline was reversed with Danyankang treatment. Danyankang capsules reduced the abundance of Verrucomicrobiota and increased the abundance of Actinobacteriota and Proteobacteria. In conclusion, the present study demonstrates that Danyankang exerts potent therapeutic efficacy against high-fat diet-induced cholelithiasis. This beneficial outcome is potentially linked to the inhibition of the TLR4/pNF-κB and SHP/CYP7A1/CYP8B1 signaling pathways, as well as the enhancement of intestinal flora species abundance.


Cholelithiasis , Gastrointestinal Microbiome , Mice , Animals , Diet, High-Fat/adverse effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Steroid 12-alpha-Hydroxylase , Mice, Inbred C57BL , Liver/metabolism , NF-kappa B/metabolism , Cholelithiasis/drug therapy , Cholelithiasis/pathology , DNA, Ribosomal
3.
J Ethnopharmacol ; 301: 115800, 2023 Jan 30.
Article En | MEDLINE | ID: mdl-36228890

ETHNOPHARMACOLOGICAL RELEVANCE: Lagotis integra W. W. Smith (L. integra W. W. Smith) is an important origin plant of the famous Tibetan medicine HERBA LAGOTIS. It was documented to treat "Chi Ba" disease clinically, the symptoms of which are similar to ulcerative colitis (UC). AIMS OF THIS STUDY: To screen out the active components and study the mechanisms of L. integra W. W. Smith treating UC. MATERIALS AND METHODS: The components of L. integra W. W. Smith were comprehensively analyzed using UHPLC-Q-TOF/MS method. The mechanisms were investigated using network pharmacology method including target prediction, protein-protein interaction network analysis and gene enrichment analysis. Then, the mechanisms were verified using Dextran Sulfate Sodium (DSS)-induced UC model. Finally, the core active components were further screened out through molecular docking. RESULTS: The results showed that 32 major components were identified including 8 flavonoids, 9 phenylpropanoid glycosides, 13 iridoid glycosides and 1 phenolic acid. 76 potential core therapeutic targets and top 5 key targets, which were AKT serine/threonine kinase 1 (AKT1), vascular endothelial growth factor (VEGFA), tumor necrosis factor-α (TNF-α), epidermal growth factor receptor (EGFR) and caspase-3 (CASP3), were screened out according to network pharmacology analysis. Animal experiments confirmed that those compounds could downregulate the expression levels of the 5 key target proteins in colonic tissue of mice to exert excellent anti-UC effect. Molecular docking results showed that the main active components were echinacoside, hemiphroside B, plantamajoside, plantainoside D, 10-O-trans-isoferuloyl catalpol and scutellarioside II. CONCLUSIONS: For the first time, our study provides insights into the effective materials and molecular mechanisms of L. integra W. W. Smith treating UC, which contributes to the understanding of its pharmacodynamics.


Colitis, Ulcerative , Drugs, Chinese Herbal , Plants, Medicinal , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Molecular Docking Simulation , Medicine, Tibetan Traditional , Herbal Medicine , Drugs, Chinese Herbal/pharmacology , Vascular Endothelial Growth Factor A , Network Pharmacology , Tibet
4.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6164-6174, 2022 Nov.
Article Zh | MEDLINE | ID: mdl-36471941

This paper aims to explore the activity of Codonopsis canescens extract against rheumatoid arthritis(RA) based on the Toll-like receptors(TLRs)/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa B(NF-κB) signaling pathways and its mechanism. The ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of C. canescens extract. Forty-eight male SD rats were randomly divided into six groups, namely the normal group, the model group, the methotrexate(MTX) tablet group, and the low, medium, and high-dose C. canescens extract(ZDS-L, ZDS-M, and ZDS-H) groups, with 8 rats in each group. The model of collagen-induced arthritis in rats was induced by injection of bovine type Ⅱ collagen emulsion. MTX(2.5 mg·kg~(-1)), ZDS-L, ZDS-M, and ZDS-H(0.3 g·kg~(-1), 0.6 g·kg~(-1), and 1.2 g·kg~(-1)) were administrated by gavage. Rats in the normal group and the model group received distilled water. MTX was given once every three days for 28 days, and the rest medicines were given once daily for 28 days. Body weight, degree of foot swelling, arthritis index, immune organ index, synovial histopathological changes, and serum levels of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß), and interleukin-6(IL-6) were observed. Protein expressions of TLR2, TLR4, NF-κB p65, p38 MAPK, and p-p38 MAPK in rats were determined by Western blot. Thirty-four main components were identified by UPLC-Q-TOF-MS, including 15 flavonoids, 7 phenylpropanoids, 4 terpenoids, 4 organic acids, 2 esters, and 2 polyalkynes. As compared with the normal group, the body weight of the model group was significantly decreased(P<0.01), and foot swelling(P<0.05, P<0.01), arthritis index(P<0.01), and the immune organ index(P<0.01) were significantly increased. The synovial histopathological injury was obviously observed in the model group. The serum levels of inflammatory factors TNF-α, IL-1ß, and IL-6 were significantly increased(P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK in the synovial tissue were significantly increased(P<0.01) in the model group. As compared with the model group, the body weights of the ZDS dose groups were increased(P<0.01), and the degree of foot swelling(P<0.01) and the arthritis index were decreased(P<0.05, P<0.01). The immune organ index was decreased(P<0.01) in the ZDS dose groups, and the synovial tissue hyperplasia and inflammatory cell infiltration were alleviated. The serum levels of TNF-α, IL-1ß, and IL-6 were significantly decreased(P<0.05, P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK were decreased(P<0.05, P<0.01) in the ZDS dose groups. C. canescens extract containing apigenin, tricin, chlorogenic acid, aesculin, ferulic acid, caffeic acid, and oleanolic acid has a good anti-RA effect, and the mechanism may be related to the inhibition of TLRs/MAPKs/NF-κB signaling pathways.


Arthritis, Experimental , Arthritis, Rheumatoid , Codonopsis , Plant Extracts , Animals , Cattle , Male , Rats , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Body Weight , Codonopsis/chemistry , Interleukin-6/blood , NF-kappa B/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Plant Extracts/therapeutic use , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology
5.
Front Pharmacol ; 13: 995777, 2022.
Article En | MEDLINE | ID: mdl-36176434

Lagotis brachystachya Maxim, a common herb in Tibetan medicine, is mainly used to treat pneumonia, hepatitis, yellow water disease (gouty arthritis). Since long-term heavy drinking is also a risk factor for gouty arthritis, the present study aimed to evaluate the underlying protective role and mechanism of extracts of Lagotis brachystachya (ELB) in chronic alcoholic liver injury combined with gouty arthritis. The rat chronic alcoholic liver injury combined with gouty arthritis model was established by long-term alcohol consumption and monosodium urate (MSU) injection. The therapeutical action of ELB was then evaluated by biochemical measurement, histopathological examination, ankle swelling assessment, and protein detection. According to biochemical measurements and histopathological evaluation, ELB could alleviate the symptoms of alcoholic liver injury combined with gouty arthritis. In addition, chronic alcohol consumption and MSU activated inflammatory-related signaling such as TLR4/MyD88/NF-κB, NLRP3, and JAK2/STAT3 pathways in the liver and synovial tissues, while ELB significantly inhibited the activation of the inflammatory signaling pathway. In conclusion, ELB is protective in rats with chronic alcoholic liver injury and gouty arthritis, possibly mediated by the inhibition of TLR4/MyD88/NF-κB, NLRP3, and JAK2-STAT3 signaling pathways in both the hepatic and synovial tissues.

6.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Article En | MEDLINE | ID: mdl-35883890

Renal hypoxia and its associated oxidative stress is a common pathway for the development of kidney diseases, and using dietary antioxidants such as flavan-3-ols to prevent kidney failure has received much attention. This study investigates the molecular mechanism by which flavan-3-ols prevent hypoxia-induced cell death in renal tubular epithelial cells. Human kidney proximal tubular cells (HKC-8) were exposed to hypoxia (1% O2) in the presence of flavan-3-ols (catechin, epicatechin, procyanidin B1, and procyanidin B2). Cell death was examined using flow cytometric analysis. Gene expression was determined using a PCR array and Western blotting, and its network and functions were investigated using STRING databases. Here, we show that the cytoprotective activity of catechin was the highest among these flavan-3-ols against hypoxia-induced cell death in cultured HKC-8 cells. Exposure of HKC-8 cells to hypoxia induced oxidative stress leading to up-regulation of DUOX2, NOX4, CYBB and PTGS2 and down-regulation of TXNRD1 and HSP90AA1. Treatment with catechin or other flavan-3-ols prevented the down-regulation of TXNRD1 expression in hypoxic HKC-8 cells. Overexpression of TXNRD1 prevented hypoxia-induced cell death, and inactivation of TXNRD1 with TRi-1, a specific TXNRD1 inhibitor, reduced the catechin cytoprotection against hypoxia-induced HKC-8 cell death. In conclusion, flavan-3-ols prevent hypoxia-induced cell death in human proximal tubular epithelial cells, which might be mediated by their maintenance of TXNRD1 expression, suggesting that enhancing TXNRD1 expression or activity may become a novel therapeutic strategy to prevent hypoxia-induced kidney damage.

7.
Nutrients ; 14(12)2022 Jun 10.
Article En | MEDLINE | ID: mdl-35745148

Gynostemma pentaphyllum is a herbal medicine widely used in Asian countries, and its saponin extracts have been shown to possess potent anti-inflammatory effects. Gypenoside XVII, an active ingredient isolated from Gynostemma pentaphyllum, has been found to alleviate the inflammation induced by LPS in the BV2 microglia, according to our preliminary study. This study aims to evaluate whether Gypenoside XVII could attenuate depression-like symptoms in vivo and tries to demonstrate the involvement of the complement regulation in its antidepressant-like effect. The results showed that Gypenoside XVII significantly attenuated depression-like behaviors in the forced swimming test, tail suspension test and sucrose preference test. It also alleviated the acute stress-induced hyperactivity of serum corticosterone levels. Additionally, Gypenoside XVII significantly inhibited the activation of microglia and the expression of C3 in mice exposed to chronic unpredictable mild stress (CUMS). Meanwhile, the activation of C3aR/STAT3 signaling and the expression of proinflammatory cytokines was reversed by Gypenoside XVII. Moreover, CUMS induced excessive synaptic pruning by activating microglia, while Gypenoside XVII restored it in the prefrontal cortex. Our data demonstrated that Gypenoside XVII, the active ingredient of Gynostemma pentaphyllum, produced the antidepressant-like effects in mice, which was mediated by the inhibition of complement C3/C3aR/STAT3/cytokine signaling in the prefrontal cortex.


Gynostemma , Saponins , Animals , Antidepressive Agents/pharmacology , Cytokines/metabolism , Mice , Neuronal Plasticity , Plant Extracts/metabolism , Plant Extracts/pharmacology , Saponins/pharmacology
8.
Cell Biosci ; 12(1): 90, 2022 Jun 17.
Article En | MEDLINE | ID: mdl-35715851

BACKGROUND: Major depressive disorder is characterized by not only monoamine neurotransmitters deficiencies but also persistent neuroinflammation. The complement system is an attractive therapeutic target for various inflammation-related diseases due to its early activation in inflammatory processes. RESULTS: In the present study, the dynamic alteration of complement C3 and its receptor C3aR during the occurrence of depression and the mechanism of astrocyte-microglia IL-1R/C3/C3aR on synaptic pruning were investigated. The proteomic analysis firstly showed that chronic stress caused an elevation of C3. GO analysis indicated that complement system-mediated synaptic pruning signaling was involved in depression. The dynamic observation indicated that C3/C3aR was activated in the early onset and throughout the course of depression induced by lipopolysaccharide (LPS) and chronic stress. In contrast, C3aR blockade inhibited the hyperactivation of microglial APT2/DHHC7 palmitoylation cycle, which mediated the translocation of STAT3 and the expression of proinflammatory cytokines. Meanwhile, C3aR blockade also attenuated the synaptic pruning and enhanced the synaptogenesis in the prefrontal cortex of mice. Moreover, the blockade of IL-1R/NF-κB signaling pathway reduced the release of C3 from astrocyte. CONCLUSIONS: The current study demonstrates that astrocyte-microglia IL-1R/C3/C3aR activation causes the abnormal synaptic pruning in depression, and suggests that the activation of complement C3/C3aR may be particularly helpful in predicting the onset stage of depression.

9.
Article En | MEDLINE | ID: mdl-35245842

A new method involving gut microbiota biotransformation, spectrum-effect relationship analysis and metabolomics analysis was developed to study the antitussive and expectorant microbial metabolites of platycosides fraction (MPFs) of Platycodonis Radix. Furthermore, their possible metabolic mechanisms were studied for the first time. The findings showed that the antitussive and expectorant effects of the platycosides fraction (PF) were significantly enhanced by the gut microbiota biotransformation. 11 active antitussive microbial metabolites and 12 active expectorant microbial metabolites, which shared 8 components, were successfully screened out via spectrum-effect relationship analysis. The prototypes of the active microbial metabolites could be reversely traced according to the gut microbiota biotransformation pathways. It was found out that one platycoside could produce several active microbial metabolites and several different platycosides could produce the same active microbial metabolite. In addition, the metabolomics analysis showed that both the PF and its active microbial metabolites could regulate the same metabolomic pathways of Linoleic acid metabolism, Arachidonic acid metabolism and Glycerophospholipid metabolism to exert antitussive activity, and regulate the same metabolomic pathway of Arachidonic acid metabolism to exert expectorant activity. These findings suggested the microbial metabolites may be the active forms of the platycosides. Overall, the proposed approach was useful in screening the active microbial metabolites; this work explained the in vivo antitussive and expectorant metabolic mechanisms of multi-constituents, multi-targets and synergistic effects of PF of Platycodonis Radix.


Antitussive Agents , Expectorants , Metabolome/drug effects , Plant Extracts , Platycodon , Animals , Antitussive Agents/chemistry , Antitussive Agents/pharmacology , Chromatography, Liquid , Expectorants/chemistry , Expectorants/pharmacology , Gastrointestinal Microbiome , Metabolomics , Mice , Oleanolic Acid/analogs & derivatives , Plant Extracts/chemistry , Plant Extracts/pharmacology , Platycodon/chemistry , Saponins
10.
Z Naturforsch C J Biosci ; 77(5-6): 197-206, 2022 May 25.
Article En | MEDLINE | ID: mdl-35286786

The aim is to establish a model of nonalcoholic fatty liver disease (NAFLD) caused by feeding with high-fat, high-fructose, and high-cholesterol diet (HFFCD) in golden hamsters, and to investigate the characteristics of the NAFLD model and metabolite changes of liver tissue. Golden hamsters were fed HFFCD or control diets for six weeks. Body weight, abdominal fat index, and liver index was assessed, serum parameters, hepatic histology, and liver metabolites were examined. The results showed that body weight, abdominal fat, and liver index of hamsters were significantly increased in the model group, the level of serum total cholesterol (TC), triglyceride (TG), and low density lipoprotein-cholesterol (LDL-C) were significantly increased in model group as well, and high density lipoprotein-cholesterol (HDL-C) was significantly decreased. In addition, lipid deposition in liver tissue formed fat vacuoles of different sizes. Metabonomics analysis of the liver showed that the metabolic pathways of sphingolipid, glycerophospholipids, and arginine biosynthesis were disordered in the NAFLD model. The modeling method is simple, short time, and uniform. It can simulate the early fatty liver caused by common dietary factors, and provides an ideal model for the study of the initial pathogenesis and therapeutic drugs for NAFLD.


Non-alcoholic Fatty Liver Disease , Animals , Body Weight , Cholesterol , Cricetinae , Diet, High-Fat , Liver/metabolism , Mesocricetus , Metabolomics , Non-alcoholic Fatty Liver Disease/metabolism
11.
J Neuroimmune Pharmacol ; 17(3-4): 503-514, 2022 12.
Article En | MEDLINE | ID: mdl-34978026

Major depressive disorder is characterized by the deficiencies of monoamine neurotransmitters, neurotrophic factors and persistent neuroinflammation. Microglial activation has been associated with neuroinflammation-related mental diseases, accompanied by NLR family pyrin domain containing 3 (NLRP3) inflammasome. Here, we investigated the effect of NLRP3 inhibition by its small molecular inhibitor MCC950 on inflammatory activity and depressive-like mice induced by chronic unpredictable mild stress (CUMS), followed by the behavioral tests including sucrose preference test and forced swimming test. NLRP3/caspase-1/IL-1ß signaling and microglial morphology in the prefrontal cortex were measured. The results showed that CUMS caused a decrease in sucrose preference and an increase in immobility time, which were reversed by NLRP3 inhibitor MCC950. In addition, NLRP3 inhibition decreased the number of microglia and changed the activated state of microglia to a resting state by morphology 3D reconstruction. Moreover, NLRP3 inhibition inactivated NLRP3/caspase-1/IL-1ß signaling in the prefrontal cortex. The results from immunofluorescence demonstrated that NLRP3 and IL-1ß expression was decreased in microglia in response to MCC950 treatment. Accordingly, proinflammatory cytokines were also decreased by NLRP3 inhibition. In conclusion, this study demonstrates that microglial NLRP3 inhibition prevents stress-induced neuroinflammation in the prefrontal cortex and suggests that microglial NLRP3 could be one of the potential therapeutic targets for depression treatment.


Depressive Disorder, Major , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Caspase 1/metabolism , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfonamides/pharmacology , Stress, Psychological
12.
Front Pharmacol ; 12: 760331, 2021.
Article En | MEDLINE | ID: mdl-34803702

Lagotis brachystachya Maxim is a characteristic herb commonly used in Tibetan medicine. Tibetan medicine records it as an important medicine for the clinical treatment of "Yellow Water Disease," the symptoms of which are similar to that of arthritis. Our previous study showed that the flavonoid fraction extracted from L. brachystachya could attenuate hyperuricemia. However, the effects of the active flavonoids on gouty arthritis remain elusive, and the underlying mechanism is not understood. In the present study, the effects of the active flavonoids were evaluated in rats or Raw264.7 cells with gouty arthritis induced by monosodium urate (MSU) crystal, followed by the detection of TLR4, MyD88, pNF-κB, and NLR family pyrin domain-containing 3 (NLRP3) expression. The swelling of the ankle joint induced by MSU crystal began to be relieved 6 h post the administration with the active flavonoids. In addition, the active flavonoids not only alleviated MSU crystal-induced inflammation in synovial tissues by histopathological examination but also reduced tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1ß) levels in the joint tissue fluid of MSU crystal-induced rats. Furthermore, Western blot analysis indicated that the active flavonoids reduced the production of these cytokines by inhibiting the TLR4/MyD88/NF-κB pathway and decreasing NLRP3 expression in synovial tissues of rats. More importantly, the inhibition of TLR4/MyD88/NF-κB pathway and NLRP3 expression was also confirmed in MSU-induced Raw264.7 cells. In conclusion, these results indicated that the active flavonoids from L. brachystachya could effectively attenuate gouty arthritis induced by MSU crystal through the TLR4/MyD88/NF-κB pathway and NLRP3 expression in vivo and in vitro, suggesting several potential candidates for the treatment of gouty arthritis.

13.
Inflammopharmacology ; 29(4): 1187-1200, 2021 Aug.
Article En | MEDLINE | ID: mdl-34244900

Lagotis brachystachya Maxim is a herb widely used in traditional Tibetan medicine. Our previous study indicated that total extracts from Lagotis brachystachya could lower uric acid levels. This study aimed to further elucidate the active components (luteolin, luteoloside and apigenin) isolated from Lagotis brachystachya and the underlying mechanism in vitro and in vivo. The results showed that treatment with luteolin and luteoloside reversed the reduction of organic anion transporter 1 (OAT1) levels, while apigenin attenuated the elevation of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) levels in uric acid-treated HK-2 cells, which was consistent with the finding in the kidneys of potassium oxonate (PO)-induced mice. On the other hand, hepatic xanthine oxidase activity was inhibited by the components. In addition, all of these active components improved the morphology of the kidney in hyperuricemic mice. Moreover, molecular docking showed that luteolin, luteoloside and apigenin could bind Toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3). Congruently, western blot analysis showed that the components inhibited TLR4/myeloid differentiation primary response 88 (MyD88)/NLRP3 signaling. In conclusion, these results indicated that luteolin, luteoloside and apigenin could attenuate hyperuricemia by decreasing the production and increasing the excretion of uric acid, which were mediated by inhibiting inflammatory signaling pathways.


Drugs, Chinese Herbal/pharmacology , Hyperuricemia/metabolism , Kidney/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Uric Acid/metabolism , Animals , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/therapeutic use , Homeostasis/drug effects , Homeostasis/physiology , Hyperuricemia/drug therapy , Kidney/drug effects , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Plants, Medicinal , Protein Structure, Secondary , Signal Transduction/drug effects , Signal Transduction/physiology , Toll-Like Receptor 4/antagonists & inhibitors , Uric Acid/toxicity
14.
Article En | MEDLINE | ID: mdl-33872929

The antitussive effect of Platycodonis Radix is closely related to the components in saponins fraction of Platycodonis Radix extract (SFPRE); however, these active components and their holistic mechanism remain unknown. Hence, a new method by integrating spectrum-effect relationship analysis with metabolomics analysis was applied to study the active components and their holistic mechanism simultaneously. For spectrum-effect relationship analysis, chemical fingerprints of ten batches of SFPRE were developed using UHPLC-LTQ-Orbitrap MSn; antitussive effect were evaluated using a classic mice-cough model induced by ammonia liquor. Spectrum-effect relationship was analyzed by partial least squares regression (PLSR) analysis. For metabolomics analysis, the altered metabolites related to cough in serum were identified by UHPLC-Q-TOF/MS and orthogonal partial least squares-discriminant analysis (OPLS-DA); metabolic pathway analysis was depended on MetaboAnalyst 4.0, KEGG database, METLIN database and HMDB database. Our findings showed that 10 identified components of Polygalacin D (peak 26), Deapio-platycodin D (peak 21), Platycodin D (peak 23), ß-Gentiotriosyl platycodigenin (peak 37), Platycoside G3 (peak 17), Platycoside C (peak 25), Platycodin D3 (peak 16), 3-O-ß-D-glucopyranosyl platycodigenin (peak 33), Platycoside F (peak 19) and 3″-O-acetyl platycodin D3 (peak 15), and 2 unidentified components (peak 45 and 44) possessed antitussive effects. The metabolomics analysis result showed that 19 metabolites were potential biomarkers related to the cough, 16 of which could be restored to normal levels by SFPRE. These biomarkers were involved in arachidonic acid metabolism, linoleic acid metabolism and glycerophospholipid metabolism. The current study may facilitate the development of antitussive medicines with fewer side-effects based on Platycodonis Radix.

15.
Mol Nutr Food Res ; 65(9): e2000869, 2021 05.
Article En | MEDLINE | ID: mdl-33783973

INTRODUCTION: Degraded porphyran is a bioactive polysaccharide extracted from Porphyra haitanensis (P. haitanensis). According to the previous studies, it produced anti-inflammatory activity, but little is known about its effects on depression. METHODS AND RESULTS: As inflammation is one of the critical factors involved in the development of depression, this study aims to elucidate the potential antidepressant-like effects of degraded porphyran. The results show that acute porphyran treatment decreased the immobility time in despair tests. In addition, subchronic porphyran administration reverses depressive-like behaviors in lipopolysaccharide (LPS)-treated mice. Meanwhile, porphyran inhibits NF-κB/NLRP3 signaling, proinflammatory cytokine release, and microglial activation in the hippocampus. Moreover, chronic porphyran treatment activates hippocampal brain derived neurotrophic factor (BDNF)/TrkB/ERK/CREB signaling pathway in chronic unpredictable mild stress (CUMS) in mice. As a result, neurogenesis and spinogenesis are maintained. CONCLUSIONS: The findings of the present study indicate that degraded porphyran intake provides a potential strategy for depression treatment, which is mediated by the inhibition of neuroinflammation and the enhancement of neurogenesis and spinogenesis in the central nervous systems.


Antidepressive Agents/pharmacology , Porphyra/chemistry , Sepharose/analogs & derivatives , Animals , Brain-Derived Neurotrophic Factor/physiology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Molecular Docking Simulation , Neurogenesis/drug effects , Neuroinflammatory Diseases/drug therapy , Sepharose/pharmacology , Toll-Like Receptor 4/physiology
16.
J Ethnopharmacol ; 274: 114046, 2021 Jun 28.
Article En | MEDLINE | ID: mdl-33753146

Ethnopharmacological relevance Paeonia lactiflora is a famous Traditional Chinese medicine widely used for immunological regulation. Paeoniflorin, the main component of Paeonia lactiflora, exerts neuroprotective and antidepressant-like effects in rodents. AIM OF THE STUDY: Fibroblast growth factor 2 (FGF-2) is essentially required in the central nervous system as it acts as both a neurotrophic factor and an anti-inflammatory factor participating in the regulation of proliferation, differentiation and apoptosis of neurons in the brain. However, it is unclear whether paeoniflorin could exert antidepressant effects via regulating FGF-2. MATERIALS AND METHODS: In the present study, the effects of paeoniflorin were evaluated in depressive mice induced by the endotoxin lipopolysaccharide (LPS) injection. RESULTS: The results showed that paeoniflorin markedly increased sucrose preference and reduced immobility time in LPS mice, indicating antidepressant effects. Consistent with the results from molecular docking showing paeoniflorin antagonizes TLR4, NF-κB and NLRP3, the biochemical analysis also indicated paeoniflorin inhibited TLR4/NF-κB/NLRP3 signaling, decreased proinflammatory cytokine levels and microglial activation in the hippocampus of LPS induced mice. In addition, the levels of neuronal FGF-2 and the density of dendritic spine were improved by paeoniflorin. More importantly, the FGFR1 inhibitor SU5402 prevented the antidepressant effects of paeoniflorin and blocked the neuroinflammatory and neurogenic regulatory effects of paeoniflorin, indicating that FGF-2/FGFR1 activation was required for the effects of paeoniflorin. CONCLUSION: Taken together, the results demonstrate that paeoniflorin exhibits neuroprotective and antidepressant effects in mice, which may be mediated by activating neuronal FGF-2/FGFR1 signaling via the inhibition of microglial activation in the hippocampus.


Anti-Inflammatory Agents/therapeutic use , Antidepressive Agents/therapeutic use , Depression/drug therapy , Glucosides/therapeutic use , Monoterpenes/therapeutic use , Neuroprotective Agents/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Antidepressive Agents/pharmacology , Calcium-Binding Proteins/metabolism , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Depression/chemically induced , Depression/metabolism , Fibroblast Growth Factor 2/metabolism , Glucosides/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Lipopolysaccharides , Lymphocyte Antigen 96/metabolism , Male , Mice, Inbred ICR , Microfilament Proteins/metabolism , Microglia/drug effects , Molecular Docking Simulation , Monoterpenes/pharmacology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/pharmacology , Toll-Like Receptor 4/metabolism
18.
Chin Herb Med ; 13(1): 116-123, 2021 Jan.
Article En | MEDLINE | ID: mdl-36117760

Objective: Berberine, a cationic alkaloid first isolated in 1917, has been approved by the China Drug Administration for decades. Accumulating evidence demonstrated its antidepressant-like activities in vivo. Our previous study has shown that chronic stress leads to the upregulation of miR-34a in the hippocampus of mice. This study aims to evaluate the underlying miR-34a mediated mechanism of berberine in chronic stress-induced depression in mice. Methods: In the present study, mice were administered with berberine during chronic stress. Levels of miR-34a, dendritic density, mitochondrial morphology, and neurogenesis were assessed in the hippocampus. Subsequently, miR-34a agomir was used as a pharmacological intervention for the investigation of berberine. Results: The results showed that berberine reversed the decrease in sucrose preference and the increase in latency to feed without altering total food consumption. Furthermore, chronic stress-induced overexpression of miR-34a decreased synaptotagmin-1 and Bcl-2 levels, thereby impairing spinal morphology, mitochondria and neurogenesis. Berberine inhibited miR-34a expression, in turn restored synaptotagmin-1 and Bcl-2 levels, and thus improved spinal morphology, mitochondria and neurogenesis in the hippocampus. However, the improvements induced by berberine were totally blocked by the pretreatment of miR-34a agomir, which caused the elevation of miR-34a levels in the hippocampus. Conclusion: This finding demonstrated that miR-34a downregulation was involved in the antidepressant-like effects of berberine in mice exposed to chronic stress.

19.
Nat Prod Res ; 35(13): 2131-2136, 2021 Jul.
Article En | MEDLINE | ID: mdl-31496304

Two new phenylpropanoid glycosides lagotiside C and D, along with 11 known compounds were isolated from the whole plant of Lagotis brachystachya Maxim. The structures of lagotiside C and D was elucidated on the basis of spectroscopic data analysis. Moreover, all isolated components were evalued for the inhibition on Xanthione Oxidase (XOD) activity in vitro. Results indicated that all the compounds exhibited inhibitory effects on XOD with inhibition ratio in the range of 6.35%-83.69%, which suggested that Lagotis brachystachya could be served as an XOD inhibitor.


Enzyme Inhibitors/pharmacology , Glycosides/isolation & purification , Oxidoreductases/antagonists & inhibitors , Plantaginaceae/chemistry , Propanols/isolation & purification , Enzyme Inhibitors/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Oxidoreductases/metabolism , Plant Extracts/chemistry , Propanols/chemistry
20.
Neurobiol Stress ; 13: 100243, 2020 Nov.
Article En | MEDLINE | ID: mdl-33344699

MicroRNAs (miRNAs) are noncoding RNAs that participate in the pathophysiology of depression by targeting many functional genes. As shown in our previous study, chronic stress up-regulates miR-34a in the hippocampus. However, little is known about the mechanism by which miR-34a regulates the process of depression or its functions as an antidepressant by regulating its targets. In the present study, the dynamic alterations in miR-34a expression and the mechanism underlying miR-34a regulation were assessed after the administration of the antidepressant fluoxetine to mice exposed to chronic stress. In addition, the effects of miR-34a inhibition on mice were directly evaluated. Both lipopolysaccharide (LPS) and corticosterone treatment caused depression-like symptoms and increased miR-34a expression. Additionally, the expression of miR-34a, which was regulated by tropomyosin receptor kinase B (TrkB)/MEK1/ERK signaling, was consistent with the onset of action of fluoxetine. A luciferase reporter assay identified synaptotagmin-1 and Bcl-2 as the targets of miR-34a. Moreover, a miR-34a antagomir exerted antidepressant-like effects, activated TrkB/MEK1/ERK signaling and improved spine morphology in the hippocampus. In conclusion, hippocampal miR-34a overexpression was a typical feature in depression-like animals, and miR-34a downregulation exerts antidepressant-like effects by restoring the spine morphology through its target synaptotagmin-1.

...